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Boundary s model and corrections to D-brane actions

Alexander Barabanschikov*
Department of Physics, Northeastern University, Boston, Massachusetts 02115

~Received 4 January 2003; published 6 May 2003!

We consider as-model formulation of open string theory in the presence of D-branes. We perform two-loop
computations and discuss gravitational corrections to the Born-Infeld action when branes are nontrivially
embedded in a curved ambient space. In particular, for the case of a stack ofN coincident D-branes we analyze
couplings of the formRi jkl @F iF j #@FkF l #.
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I. INTRODUCTION

To understand the dynamics of D-branes it is very imp
tant to study the low energy effective action. For boso
strings to leading order ina8 it is given by the Dirac-Born-
Infeld ~DBI! action @1,2#. For superstrings there is an add
tional Wess-Zumino term describing the coupling of a bra
to Ramond-Ramond fields@3#.1 In this paper we discuss ce
tain higher order corrections to the DBI action depending
the embedding of branes in a curved ambient space.

Suppose we have a Dp-brane nontrivially embedded in
target space. In the Einstein frame the effective action fo
single D-brane is given by

SDBI52tpE dsp11eF@212g~p11!/2#

3A2det@G̃ab1egF~B̃ab12pa8Fab!#. ~1!

Hereg524/(D22). We are using greek letters~m, n,...! for
space-time coordinates,~a, b,...! for coordinates on the
brane, and latin letters (i , j ,...) for coordinates transverse t
the brane. Thus, in the case of ap-brane embedded in
D-dimensional target space,m50,...,D21, a50,...,p, and
i 5p11,...,D21. $sa% is a set of coordinates on the bran
and the embedding in target space is given byXm(sa). Most
computations are done in a static gauge:Xa5sa, Xi

5Xi(sa). The massless closed string fieldsGmn , Bmn , and
F are functions ofXm and the massless open string fieldAa

is a function ofsa. The action~1! describes the coupling o
a brane to Neveu-Schwarz–Neveu-Schwarz~NS-NS! back-
ground bulk fieldsGmn , Bmn , andF. The tilde denotes the
induced quantitiesG̃ab5Gmn(]Xm/]sa)(]Xn/]sb), B̃ab
5Bmn(]Xm/]sa)(]Xn/]sb). The action for the bulk mass
less fields is also well known. For example, in the boso
case it is given to the leading order~in the Einstein frame! by

Sbulk5
1

2k2 E dDxA2G

3S R2
1

12
e2gFHmnrHmnr1g]mF]mF D , ~2!
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where Hmnr53]@mBnr] . Subleading terms can be foun
in @9#.

There are different ways to determine brane and bulk
tions. One of them is to compute the string tree amplitud
for massless fields, expand them in powers ofa8, and look
for terms in the effective action to reproduce them. In th
way thea82 curvature corrections to the brane action in t
superstring case@5# and thea8 curvature corrections to the
brane action for the bosonic string@6# were found. Another
way is to compute the renormalization group beta funct
for the field theory of strings on the world-sheet. The co
sistency condition of~super!conformal invariance require
that these beta functions should vanish. Treating mass
string fields as background, we get the equations of mo
from which we can derive the effective action. It is believ
that the two approaches are perturbatively equivalent~see for
example@16,9#!. In this paper we perform another check
the correspondence and also compute certaina8 corrections
to D-brane action evaluating the two-loop beta function
the sigma model.

In Sec. II we present thes model relevant to the case of
single D-brane. Using the background field method, we co
pute the one-loop beta function for the scalar fieldsF i de-
scribing transverse fluctuations of the brane in a curved
bient space. In Sec. III we reproduce some of the result
@6# in the s-model language. In particular, we determine t
coefficients of the possibleO(a8) curvature terms in the
effective action and discuss field redefinitions.

The case of a stack ofN coincident D-branes is somewha
more complicated. Now we expect the effective action of
brane to be generalized to a non-Abelian theory with ga
group U(N). In this case, fields get promoted to U(N) ma-
trices. One of the open problems is how to expand the squ
root of the determinant since the ordering of the noncomm
tative fields is not clear. We are not addressing this prob
here. In Sec. IV we describe the sigma model with bound
fermions and compute the one-loop beta function for
non-Abelian fieldAa in a curved background. Setting th
beta function to zero gives equations of motion consist
with the DBI action. It is interesting to study the higher ord
corrections to the DBI action. In the non-Abelian case in
curved background there is a new class of terms that co
appear. In Sec. V we compute corrections of the fo
Ri jkl @F iF j #@FkF l # to the effective action in the bosonic an
superstring cases. We discuss the results in Sec. VI.
©2003 The American Physical Society01-1
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II. s-MODEL ACTIONS

The s-model action for a single Dp-brane in bosonic
string theory contains two terms—bulk and boundary:

SS5
1

4pa8
E

S
d2sAg@gabGmn~X!]aXm]bXn

1 i eabBmn~X!]aXm]bXn1a8RF~X!#, ~3!

S]S52 i E duF]usaAa1 i
1

2pa8
] rX

mFmG . ~4!

Here, all the fieldsGmn , Bmn , F, Aa , andF i are functions
a
n-

ar

y
to

a

10600
of Xm. Consider for the time being only terms involvingGmn

andF i . They can also be rewritten as

S5
1

2pa8
E

S
d2z Gmn]Xm]̄Xn1

1

2pa8
E

]S
du ] rX

iF i .

~5!

The last term was obtained usingT duality from thes model
of open string theory without D-branes. We are going to u
the background field method, expanding this action nea
bare classical solutionXm5X̃m1pm. It is easier to use ex-
pansion in normal coordinatesjm in space-time andza on
the brane following@2,7#. For our purposes it is sufficient to
expand to the fourth order inj andz:
SS@X#5
1

2pa8
E d2zH Gmn]X̃m]̄X̃n1Gmn~]X̃m¹̄jn1 ]̄X̃m¹jn!1Rmnrs]X̃m]̄X̃sjnjr1Gmn¹jm¹̄jn

1
1

3
DmRnrst]X̃n]̄X̃tjmjrjs1

2

3
Rmnrs~]X̃m¹̄js1 ]̄X̃m¹js!jnjr1

1

3
Rmnrs¹jm¹̄jsjnjr

1
1

12
~DmDnRrstv14Rmnr

m8 Rm8stv!]X̃r]̄X̃vjmjnjsjt1
1

4
DmRnrst~]X̃n¹̄jt1 ]̄X̃n¹jt!jmjrjsJ 1•••, ~6!

S]S@X#5
1

2pa8
E duF] r X̃

i1¹ rj
i1] r X̃

lS 1

3
Rmnl

i jmjn1
1

12
DmRnrl

i jmjnjrD1S 1

60
DmDnRrsl

i 2
1

45
Rmnt

i Rrsl
t D jmjnjrjsG

3FF i1D̃aF iz
a1

1

2
D̃aD̃bF iz

azb1
1

6
D̃aD̃bD̃gF iz

azbzg1
1

24
D̃aD̃bD̃gD̃dF iz

azbzgzdG1•••. ~7!
ns

is
Here Dm is the usual covariant derivative with Levi-Civit
connection,D̃a is the covariant derivative on the brane co
structed using the induced metric and

¹jm5]jm1Gnr
m jn]X̃r, ¹̄jm5 ]̄jm1Gnr

m jn]̄X̃r,

and ¹rj
m5] rj

m1Gnr
m jn] r X̃

r.

Using equations of motion we obtain an additional bound
term:

1

2pa8
E d2zGmn~]Xm¹̄jn1 ]̄Xm¹jn!

5
1

2pa8
E du] rX

mGmnjn.

In the bulk action, the kinetic term is multiplied b
Gmn(X̃). One way of bringing it into the standard form is
introduce the vielbein fieldVm

A , Gmn5Vm
AVn

BhAB , and
switch to the tangent space quantities. Here we choose
y

n-

other approach. We expand the metric asGmn5hmn

12kHmn and expand the sigma model and effective actio
in powers ofH.

The ‘‘Neumann’’ and ‘‘Dirichlet’’ propagators on the disk
are given, respectively, by

Nab~z,z8!5^ja~z!jb~z8!&

5
a8

2
hab$2 lnuz2z8u22 lnu12 z̄z8u2%, ~8!

Di j ~z,z8!5^j i~z!j j~z8!&

5
a8

2
d i j $2 lnuz2z8u21 lnu12 z̄z8u2%. ~9!

Note thatDi j (z,z8) is zero if at least one of the variables
on the boundary. Thus we can neglect all transversej i ’s in
the boundary terms~but not] rj

i).
1-2
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The superstring sigma model contains additional pie
with fermions. The supersymmetric extension of part of
bulk action containing theGmn field is given by

SS5
1

2pa8
E

S
d2zH GmnS ]X̃m]̄X̃n1

a8

2
Cm¹̄Cn

1
a8

2
C̄m¹C̄nD1

a82

2
RmnrsCmCnC̄rC̄sJ . ~10!

The boundary action is obtained byT duality from the
supersymmetric version of the Wilson loop. The pieces c
taining F i fields are given by

S]S5
1

2pa8
E

]S
du@] r X̃

iF i1a8~cac̄ i2c i c̄a!]aF i #.

~11!

Herecm5Cmu]S . We will not be interested in the supersym
metric extension of the term with theBmn field.

The expansion of the additional fermionic terms in norm
coordinates sufficient for two-loop computation is

1

4p E
S
dz2H Gmn~Cm¹̄Cn1C̄m¹C̄n!

1RmnrsS 1

3
jnjr~Cm¹̄Cs1C̄m¹C̄s!1a8CmCnC̄rC̄s

2
1

2
]̄X̃mjnCrCs2

1

2
]X̃mjnC̄rC̄sD J ~12!

and

1

2pa8
E

]S
duFa8~cac̄ i2c i c̄a!S ]aF i1D̃b]aF iz

b

1
1

6
~3D̃bD̃g]aF i1R̃bga

d ]dF i !z
bzgD G . ~13!

The fermionic propagators are

^Cm~z!Cn~w!&5
hmn

z2w
, ^Cm~z!C̄n~w!&5

ihmn

12zw̄
.

~14!

Our strategy will be to compute the renormalization gro
beta function corresponding to the couplin
(1/2pa8)*du ] rX

iF i . Following @10#, we define the beta
function for the fieldF i to be

b i
F~Fbare!52

d

d ln L
F i

bare~F!. ~15!

Here,

F i
bare~F!5F i1(

n
Ki

~n!~F!~ ln L!n. ~16!
10600
s
e

-

l

Solving forF i , one can obtainb i
F(Fbare) in terms ofFbare.

Now the explicit dependence on lnL must cancel, which is a
good test of the calculations. Setting the beta function to z
will give us equations inGmn andF i .

Let us compute the one-loop beta function to first order
Hmn andF i in the bosonic case. For simplicity, consider t
case whenHa i50 and all fields depend only onsa. The
general procedure is to leave normal coordinates] rj

i andja

in the boundary action unchanged and express normal c
dinatesj i ~without derivative] r) and za in the boundary
action in terms ofja. Under the above conditions thi
means:j i u]S50 ~but not ] rj

i) and jau]S5za. We have to
evaluate the set of diagrams shown in Fig. 1. The last
diagrams with bulk vertices combine to produce a contrib
tion proportional to] r X̃

i . Their computation involves inte
gration overd2z and no integration overu. The bulk integra-
tion can be done as follows@8#:

E d2z5E r dr E du5E r dr R dw

iw
, ~17!

wherew5eiu. First one needs to perform the contour int
gration and then the integration overr, introducing a cutoff
L @so thatNab(u,u)52a8hab ln L2 for the pointu on the
boundary of the disk#. As a result, we get

bF
i5a8]2F i12ka8S 2Hab]a]bF i2]aHab]bF i

1
1

2
]aHb

b]aF i1]aHi j ]aF j D . ~18!

It is easy to see that at this order the beta function is prop
tional to the equations of motion coming from

Seff52tpE dp11sA2G̃, ~19!

where for the induced metric on the D-brane we have

G̃ab~X̃1F̃!5hab12kHab1]aF̃ i]bF̃ i12kHi j ]aF̃ i]bF̃ j

~20!

if we identify F i[F̃ i . More precisely, we get

dSeff5
tp

a8
E dp11sA2G̃@bF~F̃!# iGi j dF̃ j . ~21!

FIG. 1. One-loop corrections to the boundary vertex. Here h
zontal lines represent the boundary and wiggly lines correspon
bosonic string coordinates.
1-3
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Computations in more general cases are also straigh
ward. For example, if we relax conditionHia50 and allow
Hmn to depend onXi then boundary term withoutF i will
also contribute to the beta function and we have

j i u]S5 1
2 Gab

i jajb1 1
6 Gabg

i jajbjg1 1
24 Gabgd

i jajbjgjd

1O~j5!.

Computations to higher orders inHmn and for Xi(sa)
Þconst become more tedious.

III. CURVATURE CORRECTIONS TO THE ACTION
OF A SINGLE D-BRANE

In @6# the authors were able to determine first order c
vature corrections to the Born-Infeld action in the case o
bosonic string by analyzing the tree level amplitudes co
sponding to scattering of massless closed string fields off
brane. At orderO„(a8)0

…, they showed agreement betwe
the string and field theory amplitudes using the expansio
the bulk and brane actions~2! and ~1!. The massless close
and open string fields are redefined as

Gmn5hmn12kHmn , F5kA~D22!/4f,

Bmn522kbmn ,

F̃ i5
1

Atp

l i , and Aa5
1

2pa8Atp

aa .

Comparison of the amplitudes on the string and fi
theory sides fixes the normalization constant of the str
amplitudes in terms oftp and k. At order O(a8) there are
five possible terms that can contribute to graviton scatter

Sbrane
~1! 52

1

2kp
2 E dp11sA2G̃$b0R̃1b1Kab

i Ki
ab

1b2Ka
iaKib

b 1b3Rmn'
mn1b4Rmnrs'

mr'ns%.

~22!

For the geometry of the submanifold we closely follow@6#.
Denote byni

m some orthonormal basis of normal vectors
the submanifoldS representing the embeddedp-brane. One
can define the projection operator

'mn5 (
i 5p11

D21

ni
mni

n5Gmn2G̃mn, ~23!

where

G̃mn5
]Xm

]sa

]Xn

]sb G̃ab. ~24!

We need to know the expressions for the five terms in
action ~22!. Rmnrs and Rmn are the usual Riemann an
10600
r-

-
a
-
e

of

g

g:

e

Ricci tensors. R̃ is the scalar curvature computed using t
induced metric. Kab

i is the second fundamental form de
fined by

Kab
i 5S ]2Xm

]sa]sb 1
]Xn

]sa

]Xr

]sb Gnr
m Dnm

i . ~25!

One also needs the bulk action toO(a8) order. In@6#, SR2bulk
(1)

was chosen in the Gauss-Bonnet form:

SR2bulk
~1!

5
1

2k2 E dDx
a8

4
egF~RmnrsRmnrs24RmnRmn1R2!.

~26!

Note that each of the above actions~22! and~26! is affected
by field redefinitions@6#. As a result, the coefficientsb0 , b1 ,
b2 , b3 , andb4 are dependent on two parameters. Compa
son of the amplitudes determines the coefficients:

b0511a, b15211a, b2512a, b35b,

b452a, and
1

2kP
5tp .

The choice ofSR2bulk
(1) in the Gauss-Bonnet form implies tha

the free parametersa andb are actually fixed: a5b50
Let us see how this result can be rederived from

s-model perspective. Since this is a two-loop computati
we also need to take into account the one-loop beta func
for the G field as well as the one-loop equations of motio
At one loop,

bG
mn
~1!52a8Rmn1O~a82!. ~27!

To simplify the computation we may assume thatHmn

depends only onsa andHia50. As in the previous section
expand all five terms from Eq.~22! and thes-model actions
~6! and~7! to linear order inHmn and quadratic order inF̃ i .
It turns out that only one two-loop diagram gives a contrib
tion proportional to lnL ~Fig. 2!. It has the following struc-
ture: ]a]bHi j ]a]bF̃ j . This means that no other contra
tions between derivatives ofHmn and derivatives ofF̃ i

moduloRmn could appear as a result of variation of Eq.~22!.
Performing the variation of Eq.~22! with respect toF̃ i ex-
plicitly gives an overdetermined system of equations on
coefficientsb0 , b1 , b2 , b3 , andb4 , which reduces tob1
52b250, b0522b4 , andb3 is undetermined. Computing

FIG. 2. Two-loop diagram with nonzero lnL contribution.
1-4
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the diagram in Fig. 2 fixes the normalization. Altogether,
find b052, b15b250, b3 undetermined,b4521, and
1/kp52tp . This corresponds to the choice ofa51 and is in
agreement with the result in@6#. As was pointed out in@9#,
field redefinitions on the effective action side correspond
different choices of the renormalization schemes fors-model
computations. Thus in our scheme we would not get
O(a8) corrections to the bulk action in the Gauss-Bonn
form. A nontrivial check of the above computation is th
cancellation of all lnL terms in the beta function.

What happens in the case of the superstring? It is eas
check that diagrams containing fermion lines do not cont
ute at one loop. Thus theO„(a8)0

… part of the brane action is
not affected. At two loops only one diagram~Fig. 3! gives a
contribution proportional to lnL. In fact, it precisely cancels
the contribution of the corresponding bosonic diagram~Fig.
2!. Thus all coefficientsb0 , b1 , b2 , andb4 are zero. This
means that there are no corrections to the BI action linea
curvature in the superstring case.

IV. s-MODEL ANALYSIS OF A SYSTEM
OF COINCIDENT D-BRANES

The s-model analysis of a stack of coincident Dp-branes
is more complicated. Instead of usingS]S @Eq. ~7!#, we
should rather be using a gauge invariant Wilson loop:

S̃]S52 log trP expH i R
]S

duS Aa]usa1 i
1

2pa8
F i] rX

i D J .

~28!

Computations using the expansion of Wilson loo
trP exp(i*]SAmdXm) are straightforward~see, for example
@10,11#!. There is, however, a way to avoid it by introducin
the auxiliary boundary fermions@12,8#. Now the Wilson loop
can be rewritten as a functional integral over the bound
fermions coupled to the fieldsAa andF i via

e2S]S~A,F!5 (
k51

N

@dl†dl#expH i
2pk

N Fl†l~t5t0!

1
N

2
21G J expF2E

0

2p

du l†

3S d

du
1

1

2pa8
] rX

iF i2 i ]usaAaDlG .
~29!

FIG. 3. Two-loop diagram with fermions with nonzero lnL con-
tribution.
10600
o

e
t

to
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y

Thus we have new auxiliary fermionic fields with propag
tors

^la~u!lb
†~u8!&5

i

2
dab sgn~u2u8!. ~30!

The boundary fermions couple to the string coordinatesXm

via N3N Hermitian traceless matricesAa andF i viewed as
background fields.

In @8# this model was used to study world-volume pote
tials on a stack of coincident D-branes and world-volum
couplings of NS fluxes, which are responsible for Mye
dielectric effect@13#. In this section we want to study th
effect of the introduction of a nontrivial embedding of
stack of coincident D-branes in a curved target space.

As a first example, let us rederive some of the results
@10# in this model as opposed to the expansion of the Wils
loop. The one-loop beta function for the non-Abelian gau
field Aa was shown to be proportional to (DA1G)bFab .
DA1G is a covariant derivative constructed using the gau
field and the Levi-Civita` connection. This is simply the equa
tions for the gauge fieldAa in the background gravitationa
field. In order to compute the beta function forAa , we need
to consider renormalization of the coupling

2 i E du la
†~Aa!ablb]uXa. ~31!

Expansion of this term is similar to Eq.~7! since the bound-
ary fermionsl are quantum fields from the beginning. T
first order inHab , we get

2 i E du l†F]uX̃aS Aa1]bAajb1
1

2
~]b]gAa2Gbg

d ]dAa

2]aGbg
d Ad!jbjgD1]uja~Aa1~]bAa2Gab

g Ag!jb!Gl.

~32!

However, in order to make comparison easier, it is bette
write it in the form

FIG. 4. Example of one-loop diagram with boundary fermio
~represented by dashed lines!.
1-5
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2 i E duH la
†S ]uX̃aAa2]uX̃ajbF̃ab2

1

2
]uX̃ajbjg]gF̃ab

2
1

2
]ujajbF̃ab1

1

2
]uX̃ajgjdGgd

b F̃abD ab

lb

2S Aaja1
1

2
]bAajajb2

1

2
Gbg

a AajbjgD ab

]u~la
†lb!J .

~33!

One can get it by using integration by parts along the lin
of @14# ~the authors of@14# considered an Abelian gauge fie
in a flat background!. Here F̃ab5]aAb2]bAa . Now it is
easy to see which diagrams will contribute to the correspo
ing terms inD (A1G)F. For example, consider the diagra
involving the bulk vertex shown in Fig. 4. Together with th
diagram with the complex conjugate bulk vertex, it combin
to give 2 ia8Gb,ag]uX̃aFbg ln L. At this order,

dS 2tpTrE dp11sA2det~G̃1F ! D
5

tp

a8
E dp11sA2G̃bA

adAa. ~34!

When there are several vertices on the boundary one
worry that there will be many regions of integration corr
sponding to the relative positions of the angles on the bou
ary. However, as was shown in@8# using the symmetry prop
erties of thej propagators on the boundary and the fact t
they are double periodic functions of angles, it is possible
significantly reduce the number of regions. The perturbat
theory becomes path ordered as in ordinary quantum
chanics. In this case the positions of ordered vertices lie
the interval@u i ,u f #,@0,2p#.

V. RF4 CORRECTIONS TO THE EFFECTIVE ACTION

It is clear that this model provides a simple way of co
puting both world-volume potentials and derivative corre
tions to the brane action. TheO(a8) corrections to the ef-
fective action~22! have an overall trace in the non-Abelia
case. Otherwise, the analysis of Sec. III holds in this cas
well since it involves terms quadratic inF i . Let us study
another possible class of terms that could appear in the
fective action: RF4. Consider two of them:

FIG. 5. Two-loop diagram contributing to
TrRi jkl @F iF j #@FkF l #.
10600
s

d-

s

ay

d-
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n
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-
-

as

f-

E dsp11Tr~aRi jkl @F̃ iF̃ j #@F̃kF̃ l #1bRi jkl F̃
iF̃kF̃ jF̃ l !.

~35!

Using the cyclic property of the trace and the symmetries
Ri jkl , it is easy to see that forRi jkl independent ofF̃ i the
second term is zero. Thusb cannot be determined at tw
loops. In order to determine the first coefficient we have
evaluate certain two-loop diagrams. In the bosonic cas
order O(H) the relevant diagram is shown in Fig. 5. T
compute the diagram we will have to evaluate the followi
integral for different orderings of$u1 ,u2 ,u3%:

E d2z du1du2du3~12r 2!2

u3~z2u1!~ z̄21/u1!~z2u2!~ z̄21/u2!~ z̄21/u3!2 .

~36!

Hereui5eiu i. We rewrite*d2z5*r dr rdw/ iw, z5rw, and
z̄5r /w. First, integrations overu1 and u3 are performed,
then contour integration overw, and finally integration over
r, introducing the cutoff. One integration overu is left out
since we want to find the renormalization of th
(1/2pa8)*du ] r X̃

iF i coupling. A somewhat lengthy bu
straightforward computation leads to the following answ
for the sum of this diagram and the diagram with the co
plex conjugate bulk vertex:

21

~2pa8!3

a82

4
~2 ln L!E du ]X̃iRi jkl @F j@FkF l ## ~37!

Interpreting ~37! as equations of motion, we finda5
2@a8tp/16(2pa8)2#.

In the case of a stack of D-branes there is an additio
term containing fermions:

E
]S

du~2a8c ic j@F iF j # !. ~38!

The diagram in Fig. 6 is the only two-loop diagram in
volving fermions proportional toRF3. It cancels the contri-
bution of the corresponding bosonic diagram. Thus,RF4

corrections are absent in this case.

VI. DISCUSSION

In this paper we used a two-loop sigma model compu
tion to determine certain gravitational corrections to t

FIG. 6. Two-loop diagram with fermions contributing t
TrRi jkl @F iF j #@FkF l #.
1-6
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D-brane action. In the bosonic case thea8 corrections~22!
were in agreement with those found in@6#. Corrections de-
pending on the dilation and theB field will be the subject of
future work. Interesting results in this direction using diffe
ent techniques were obtained in@15#. In the superstring cas
we analyzed the possibility of (a8)2 corrections of the form
~35!. Those terms could be of interest in AdS conformal fie
theory~CFT! correspondence or dynamics of giant gravito

For example, in the case of spaces of constant curva
with curvature independent of the transverse coordinates,
~35! is proportional to Tr(@F i ,F j #2), which is important for
Myers’ dielectric effect@13#. Thus it could be considered as
0;

y

ys

s.

10600
.
re
q.

next order correction since the effective expansion param
in the sigma model isa8/Rc

2. However, in the present pape
we showed that those corrections are absent in the su
string case.
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