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We consider a--model formulation of open string theory in the presence of D-branes. We perform two-loop
computations and discuss gravitational corrections to the Born-Infeld action when branes are nontrivially
embedded in a curved ambient space. In particular, for the case of a stddowfcident D-branes we analyze
couplings of the formRy [ ®'®/ [P P'].
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I. INTRODUCTION where H,,,=3d;,B,, . Subleading terms can be found
in [9].

To understand the dynamics of D-branes it is very impor- There are different ways to determine brane and bulk ac-
tant to study the low energy effective action. For bosonictions. One of them is to compute the string tree amplitudes
strings to leading order i’ it is given by the Dirac-Born-  for massless fields, expand them in powersx6f and look
Infeld (DBI) action[1,2]. For superstrings there is an addi- for terms in the effective action to reproduce them. In this
tional Wess-Zumino term delscribirjg the coupling of a brangyay thea'? curvature corrections to the brane action in the
to Ramond-Ramond fieldS]." In this paper we discuss cer- g perstring casgs] and thea’ curvature corrections to the
tain higher order corrections to the DBI action depending Oyrane action for the bosonic strifi§] were found. Another

theSembedding zf branes in a C”We‘?' grlr;bientbs%%ced ) way is to compute the renormalization group beta function
uppose we have afbrane nontrivially embedded in a for the field theory of strings on the world-sheet. The con-

target space. In the Einstein frame the effective action for %istency condition ofisupejconformal invariance requires

single D-brane is given by that these beta functions should vanish. Treating massless
string fields as background, we get the equations of motion
Spei= — ij doPtigPl-1-r(p+1)/2] from which we can derive the effective action. It is believed
that the two approaches are perturbatively equivalkes for
% \/—de[éa5+ eyfb(’gaBJr 2ma'Fap)l. () example[16,9)). In this paper we perform another check of
the correspondence and also compute certainorrections
Herey=—4/(D—2). We are using greek lettefs, »,..) for  to D-brane action evaluating the two-loop beta function in
space-time coordinategq, B,..) for coordinates on the the sigma model.
brane, and latin letters (j,...) for coordinates transverse to In Sec. Il we present the model relevant to the case of a
the brane. Thus, in the case ofpebrane embedded in a single D-brane. Using the background field method, we com-
D-dimensional target spacg=0,...D—1, a=0,...p, and  pyte the one-loop beta function for the scalar fiekisde-
i=p+1,..D—-1. {0 is aset of coordinates on the brane scriping transverse fluctuations of the brane in a curved am-
and the embedding in target space is giverkifo®). Most  pient space. In Sec. Iil we reproduce some of the results of
computations are done in a static gaug&®=o®, X' [g]in the o-model language. In particular, we determine the
=X(c%). The massless closed string fieldg, , B,,, and  coefficients of the possibl®(«') curvature terms in the
@ are functions oiX* and the massless open string fiéll  effective action and discuss field redefinitions.
is a function ofo®. The action(1) describes the coupling of  The case of a stack &f coincident D-branes is somewhat
a brane to Neveu-Schwarz—Neveu-Schwis-NS back-  more complicated. Now we expect the effective action of the
ground bulk fieldsG,,,, B,,, and®. The tilde denotes the prane to be generalized to a non-Abelian theory with gauge
induced quantitiesGa5=Gw(axﬂlaaa)(&X”/aaﬁ), B.s  group UN). In this case, fields get promoted to N) ma-
= BW((?X“/(?U“)((?XV/(?U'B). The action for the bulk mass- trices. One of the open problems is how to expand the square
less fields is also well known. For example, in the bosoniaoot of the determinant since the ordering of the noncommu-
case itis given to the leading ord@n the Einstein frameby tative fields is not clear. We are not addressing this problem
here. In Sec. IV we describe the sigma model with boundary
:iJ d°x/=G fermions and compute the one-loop beta function for the
Soulk= 512 non-Abelian fieldA, in a curved background. Setting the
beta function to zero gives equations of motion consistent
R— 1i282y¢H“”PHWP+ yd, 0D |, (2) with the DBI action. It is interesting to study the higher order

% corrections to the DBI action. In the non-Abelian case in a
curved background there is a new class of terms that could
appear. In Sec. V we compute corrections of the form

*Email address: abaraban@lynx.neu.edu Rijk|[(I)'(IJ'][CI>kCI>'] to the effective action in the bosonic and
For a review, se¢4]. superstring cases. We discuss the results in Sec. VI.
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Il. o-MODEL ACTIONS of X*. Consider for the time being only terms involvi@y,,

The o-model action for a single P-brane in bosonic and®;. They can also be rewritten as

string theory contains two terms—bulk and boundary:

1 — 1 _
S= ; f d?z G, dXHaxX"+ ; f dé o, X'd;.
L 2ma’ s m 2wa’ Jss
Si= o7 | PG, (000X 0 ®
+i eabBW(X)&aX“ﬁbX”-l— a'RO(X)], (3)  The last term was obtained usifigluality from theo- model
of open string theory without D-branes. We are going to use
the background field method, expanding this action near a
) N ) “ bare classical solutioX”=X*+ 7*. It is easier to use ex-
Six=—1] df| dgoAstis—7 XD, |. (4 pansion in normal coordinated* in space-time and® on

the brane followind2,7]. For our purposes it is sufficient to

Here, all the fieldss B,,, ®, A,, and®; are functions expand to the fourth order i&and {:

mvo

REGRTE 0+ G,V T

uwrpo

1 - - —
— 2 N v N v N v
SIXI= 5 f d z[Gwax IX+ G, (IXFV £+ XAV £ + R
1 g 2 - 1 —
+ §DMRVPMO7X”<9XT§“§"§‘T+ =R (IXKVET+ IXMV ET) EVEP + §R#VPUV§“V§‘T§”§"

3 HvpO

+..., (6)

14

1 ) ~ — 1 PO —
+ 35 (DuDuRor+ AR Ry 7o) IXPIXTERETETE™+ T DUR, 6 (IXTV ET+ IXTV ET) E1EPET

1 . 1
=P DI/RIp(r)\_ER:uVTR;(r)\)gﬂgygpga}

*le0 o~

1 <i 1 1
SuslXl=5 7 f dﬁ[ﬁrX'+Vr§'+&rX" TR E“E"+ oD R, 6

X T, (7)

[ al~~ aﬂ1~~~ ayf - ayBeysd
Qi+ D P+ 5DaDp®i P+ ED D gD, P L PEY+ 57D (D gD, D @i L7

HereD,, is the usual covariant derivative with Levi-Civita other approach. We expand the metric &,,=7,,
connectionD , is the covariant derivative on the brane con- +2kH,,, and expand the sigma model and effective actions

structed using the induced metric and in powers ofH.
The “Neumann” and “Dirichlet” propagators on the disk

B L . are given, respectively, by
Vér=0&n+T, §79XP,  VE-=0E-+T, £"9XP,

and V,£4= g, ¢4+ T £°9,X, N“A(z,2)=(£"(2)§7(2"))
tUsing equations of motion we obtain an additional boundary — %, n*B{—Injz—Z' |2~ In|1-ZZ'|2, (8
erm:

1 _ _
2mal fdzZGW(’”(”Vg TIXEVE) Di(z,2))=(¢(2)8(2))

!

— fd X1G, & =2 s 24 1n[1-Z2' |2 9
o | 409XEG,E =5 {=Inlz=2'[*+In[1-2Z'|*}. (9

In the bulk action, the kinetic term is multiplied by

G,.,(X). One way of bringing it into the standard form is to Note thatD'i(z,z") is zero if at least one of the variables is
introduce the vielbein fieldv/, G,,=V4Vonag, and on the boundary. Thus we can neglect all transveétsein
switch to the tangent space quantities. Here we choose athe boundary terméut notd, &').
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The superstring sigma model contains additional pieces g_x3 8. Xt aXi axi
with fermions. The supersymmetric extension of part of the
bulk action containing th&,,, field is given by 09 00 OH OH
: f d22| G| gk + LT
SE_Z’ITCY' s zi G| IXFIX+ o>
H 0% 0%

’ a12 o
+——R W pp oy (10

2 nvpo

+ L yuyyr
2

FIG. 1. One-loop corrections to the boundary vertex. Here hori-

. . . . zontal lines represent the boundary and wiggly lines correspond to
The boundary action is obtained Byduality from the o conic stringpcoordinates. y 9y P

supersymmetric version of the Wilson loop. The pieces con-

taining @; fields are given by Solving for®; , one can obtaiB®(®**9 in terms ofd P ae
1 Now the explicit dependence onMmust cancel, which is a
Sy=o—7 J dO[ 9, XD+ a' (P — ¥ y*)a,D;]. good test of the calculations. Setting the beta function to zero
2ma’ )y will give us equations irG,,, and ;.
(11) Let us compute the one-loop beta function to first order in

] ) ) H,, and®; in the bosonic case. For simplicity, consider the
Herey=W*| s . We will not be interested in the supersym- ase wherH ;=0 and all fields depend only oa®. The

metric extension of the term with tt#,, field. general procedure is to leave normal coordinatgs and £
The expansion of the additional fermionic terms in normalin the houndary action unchanged and express normal coor-
coordinates sufficient for two-loop computation is dinates& (without derivatived,) and ¢ in the boundary
action in terms ofé®. Under the above conditions this
if dzz[G (WA TEY ) means:¢'|,s=0 (but r)ota,gi) and £°| ;5 =¢{“. We have to
4w s a evaluate the set of diagrams shown in Fig. 1. The last two

diagrams with bulk vertices combine to produce a contribu-
+pr(r(£§v§p(q;u€«po+ WAV )+ o' Wy rgego  tion proportional tod, X'. Their computation involves inte-
3 gration overd?z and no integration ovef. The bulk integra-
tion can be done as follows]:

1. 1. ——
— S OXHEWPPV T — — GXHE PP (12
2 2 dw
f dzz=frdrfd0=frdr —, (17)
iw
and
1 wherew=e'’. First one needs to perform the contour inte-
: dél o' (b0 — b (%‘I)*E) 0, D, 7P gration and then the integration overintroducing a cutoff
27a Jaz o« (Y= dY) T Dpdabil A [so thatN*(u,u) = — a' 7%# In A? for the pointu on the

1 boundary of the disk As a result, we get
+ g(?)DﬁDyaacpi + nga(;CI)i)g'BgV) } (13)

B(I)i: a'r?zq)i+2ka' - Haﬁﬁaﬂlgq)i—(}’aHaB(?ﬁq)i

The fermionic propagators are
1
e _ i v + 5 9 HGDPi+ I H i, P
Iz 4 =

o (PR (W)= e | | o

(14) It is easy to see that at this order the beta function is propor-
tional to the equations of motion coming from
Our strategy will be to compute the renormalization group

beta  function corresponding to the coupling Se= — Tpf dPHigy -3, (19)

(1/27a’)fdO 9, X'®;. Following [10], we define the beta

function for the field®; to be

. (18)
(VH(2)¥"(w))=

where for the induced metric on the D-brane we have

BY (P =— d PP P). (15)  Gup(X+®) =51 2kH 5+ 9,0 9,0+ 2kH;; 0,B' 9,
! dinA ! (20)
Here, if we identify ®;=®'. More precisely, we get
PP =D+ X KM(@)(INA). (16 5= [ @ 10 =BL8" @) 1G, B (21
n
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Computations in more general cases are also straightfor- 58X
ward. For example, if we relax conditidf; ,=0 and allow
H,, to depend onX' then boundary term withou®; will
also contribute to the beta function and we have 90

€ sy = 3T, gt EP+ 4T p E°EPEV+ 53T, 5 SE EPEVES

+0(&).
i ; i i o a 000
Computations to higher orders ihl,, and for X'(c®)
#const become more tedious. FIG. 2. Two-loop diagram with nonzero Ia contribution.
Ill. CURVATURE CORRECTIONS TO THE ACTION Ricci tensors. R is the scalar curvature computed using the
OF A SINGLE D-BRANE induced metric. K5 is the second fundamental form de-
N fined b
In [6] the authors were able to determine first order cur- y
vature corrections to the Born-Infeld action in the case of a , PXE gXY gXP ,
. . . . [ " i
bosonic string by analyzing the tree level amplitudes corre- Kaﬁ—(—aaaﬁaﬁ + 90° 908 Lopln,. (25)

sponding to scattering of massless closed string fields off the
brane. At ordetO((a')?), they showed agreement between ne also needs the bulk action "y order. Inf6]. sV
the string and field theory amplitudes using the expansion Ov%as chosen in the Gauss-BonriQtC:‘O)rm' - In[6]: Sezpu
the bulk and brane action®) and(1). The massless closed ’
and open string fields are redefined as 1 a'
Skebuk= 12 f d°x €7 (RPTR 0~ 4RMR,,, + R?).
GLv=7nut2kH,,, ®=k{(D—-2)/4¢, (26)
B,,=—2kb,,, Note that each of the above actiof®®2) and(26) is affected
by field redefinitiong 6]. As a result, the coefficieni8y, B,

B>, B3, andB, are dependent on two parameters. Compari-
son of the amplitudes determines the coefficients:

B0:1+(1, Bl:_l+a1 BZZl_ai B,?;:Ba

~ 1
¢'=—=\', andA,=

——3a,.
\/T—p 27701’\/7'—p “

Comparison of the amplitudes on the string and field
theory sides fixes the normalization constant of the string
amplitudes in terms of, andk. At order O(a') there are
five possible terms that can contribute to graviton scattering:

The choice OTS(Rlz)bu,k in the Gauss-Bonnet form implies that

ﬁ4=-—a, andzigqu.

1 = . : the free parameterg and 8 are actually fixed: a=B8=0
%%;ne:_mf dP* o\ = G{BoR+ B1K| sK Let us see how this result can be rederived from the
P o-model perspective. Since this is a two-loop computation,
+32KL"KFB+ B3Ry L #+ BaR yype L HPL 7} we also need to take into account the one-loop beta function
for the G field as well as the one-loop equations of motion.
(22) At one loop,
For the geometry of the submanifold we closely follp8. BCV=_ 'R, +0(a'?). (27)
Denote byn! some orthonormal basis of normal vectors to * *
the submanifol® representing the embeddeebrane. One To simplify the computation we may assume tliéf,
can define the projection operator depends only ow“ andH;,=0. As in the previous section,

expand all five terms from Eq22) and thes-model actions

(6) and(7) to linear order inH ,, and quadratic order ib'
It turns out that only one two-loop diagram gives a contribu-
tion proportional to I\ (Fig. 2. It has the following struc-

where ture: a“aﬂHijaaaﬁFbi. This means that no other contrac-

tions between derivatives ofi,,, and derivatives ofd’
moduloR,,, could appear as a result of variation of E22).

Performing the variation of Eq22) with respect tod' ex-
plicitly gives an overdetermined system of equations on the
We need to know the expressions for the five terms in theoefficientsBy, B1, B2, B3, and B4, which reduces t@;

action (22). R,,,, and R,, are the usual Riemann and =-—f,=0, Bo=—28,4, andB; is undetermined. Computing

D-1

L#v= > nkn’=GH'—GH, (23
i=p+1

X IX"
= 55 G (24)

v
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)& 0X
80H r
6% — /

FIG. 3. Two-loop diagram with fermions with nonzeroAncon-

tribution. FIG. 4. Example of one-loop diagram with boundary fermions

. N . o (represented by dashed lines
the diagram in Fig. 2 fixes the normalization. Altogether, we

find Bo=2, B1=pB,=0, B3 undetermined,,=—1, and

1/k,=27,. This corresponds to the choice ®=1 and is in

agreement with the result {6]. As was pointed out if9],

field redefinitions on the effective action side correspond to

different choices of the renormalization schemessfeanodel i

computations. Thus in our scheme we would not get the (Na( 0))\;()(9/)>:§5ab59r(6_ 0'). (30

O(a') corrections to the bulk action in the Gauss-Bonnet

form. A nontrivial check of the above computation is the

cancellation of all IM\ terms in the beta function. The boundary fermions couple to the string coordinatés
What happens in the case of the superstring? It is easy tsia NX N Hermitian traceless matricés, and®; viewed as

check that diagrams containing fermion lines do not contrib-background fields.

ute at one loop. Thus th@((«')°) part of the brane action is In [8] this model was used to study world-volume poten-

not affected. At two loops only one diagraifig. 3 gives a tials on a stack of coincident D-branes and world-volume

contribution proportional to IAA. In fact, it precisely cancels couplings of NS fluxes, which are responsible for Myers’

the contribution of the corresponding bosonic diagr@iy.  dielectric effect[13]. In this section we want to study the

2). Thus all coefficient®3,, 81, B>, and B, are zero. This effect of the introduction of a nontrivial embedding of a

means that there are no corrections to the Bl action linear istack of coincident D-branes in a curved target space.

Thus we have new auxiliary fermionic fields with propaga-
tors

curvature in the superstring case. As a first example, let us rederive some of the results of
[10] in this model as opposed to the expansion of the Wilson
IV. o-MODEL ANALYSIS OF A SYSTEM loop. The one-loop beta function for the non-Abelian gauge

OF COINCIDENT D-BRANES field A, was shown to be proportional taD¢*")AF ;.

DA*T is a covariant derivative constructed using the gauge
field and the Levi-Civitaconnection. This is simply the equa-
tions for the gauge field, in the background gravitational
field. In order to compute the beta function f#y,, we need

to consider renormalization of the coupling
@iarx‘)].

The o-model analysis of a stack of coincidenpfbranes
is more complicated. Instead of usirg)s [Eq. (7)], we
should rather be using a gauge invariant Wilson loop:

S,s=—logtrP exW’i 35 de
23

Computations using the expansion of Wilson loops

trP exp(/ A, dX*) are straightforward(see, for example,

[10,11)). There is, however, a way to avoid it by introducing Expansion of this term is similar to E¢7) since the bound-
the auxiliary boundary fermior{4.2,8]. Now the Wilson loop ~ ary fermions\ are quantum fields from the beginning. To
can be rewritten as a functional integral over the boundaryirst order inH,z, we get

fermions coupled to the field&, and®; via

1
L
Aaago' I27Ta,

(28) i f dONI(A,)2ON 0, X" 31)

N 27k ; 1 0% 8 1 5
e*Sﬁz(A,‘b):E [d)\Td)\]equ_ 7\1.)\(7': TO) _|f don (90)( Aa+aﬁAa§ +§(&B¢9YAQ—FM&5AQ
k=1
+§_1 ]eXF{_JZWda)\T _(?argyAﬁ)g'Bgy +59§Q(Aa+(&BAa_FZﬁAy)§B) A
0

(32)
X

d 1 ‘
@‘f‘rarxlq)i =i é’gO‘aAa) )\} .
Ta However, in order to make comparison easier, it is better to

(290 write it in the form
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8Xx?

> — — —
> & @ ® [0P]
FIG. 5. ) |TW0-|00P diagram  contributing  to FIG. 6. Two-loop diagram with fermions contributing to
TI’Rijk|[CIJ'<I>'][<I) ()] ] TrRllkl[q)lq)J][q)kq)l]
; t 5 Ya Y a ¢ BT 1 YasBevy E +1 DHidiT dkd! Didkdid!
—i| dO{NL| 3K A, = 0 X EF g 5 0 X0 F g doP* 1Tr(aR [/ D[ DKD']+ bRy D DFDID).

1 1 ab (39
— T, £xEPE Z 9. XagvedrB B

2 o6 & Fapt 2 IgX7E7E FW?F&B) Mo Using the cyclic property of the trace and the symmetries of
1 1 ab Rijki » it is easy to see that fdR;; independent ofb' the
—| A £+ S a,A E0EP— 2T A gP y) a.O00M ] second term is zero. Thus cannot be determined at two

( ¢ 27k & 2 By & o(hako) loops. In order to determine the first coefficient we have to

(33) evaluate certain two-loop diagrams. In the bosonic case at

order O(H) the relevant diagram is shown in Fig. 5. To
compute the diagram we will have to evaluate the following

One can get it by using integration by parts along the Iine%ntegral for different orderings ofé, , 0, 0}

of [14] (the authors of14] considered an Abelian gauge field

in a flat background Here F ;= d,Az—d5A,. Now it is d?z df1d0,d 05(1—r?)?
easy to see which diagrams will contribute to the correspond- j — — — — — 3.
ing terms inD**NFE. For example, consider the diagram U3(Z=U) (2= Ly) (2= Up) (= Tip) (2 L) (36

involving the bulk vertex shown in Fig. 4. Together with the
diagram with the complex conjugate bulk vertex, it combinesq e =it We rewrite[d%z= [r drédw/iw, z=rw, and
H 1 ! ~a 1 _ ! . ) . . ! !
to give —ia'T 5 ,,doX“F#7In A. At this order, z=r/w. First, integrations ovep; and #; are performed,
then contour integration ovev, and finally integration over

- r, introducing the cutoff. One integration ovéris left out
5( —Tprf dP* o\ —de(G+ F)) since we want to find the renormalization of the
(1/27a’)[d6 3, X'®; coupling. A somewhat lengthy but
_ " ptl R pA spa straightforward computation leads to the following answer
Ca f A" oV =G, oAT (34) for the sum of this diagram and the diagram with the com-

plex conjugate bulk vertex:

When there are several vertices on the boundary one may )2
worry that there will be many regions of integration corre- __1 e
sponding to the relative positions of the angles on the bound- (2ma’)® 4
ary. However, as was shown [i]] using the symmetry prop-
erties of the¢ propagators on the boundary and the fact thatnterpreting (37) as equations of motion, we find=
they are double periodic functions of angles, it is possible to-[ a’ 7,/16(2ma’)?].
significantly reduce the number of regions. The perturbation In the case of a stack of D-branes there is an additional
theory becomes path ordered as in ordinary quantum méerm containing fermions:
chanics. In this case the positions of ordered vertices lie in
the intervall 6, ,0;]C[0,27].

(—In A)f d@ IX'Rij [ P[P D']] (37)

dem—a’w‘w"[dﬁ@j]). (39

V. R®* CORRECTIONS TO THE EFFECTIVE ACTION , o , _ _
The diagram in Fig. 6 is the only two-loop diagram in-

It is clear that this model provides a simple way of com-volving fermions proportional t&R®3. It cancels the contri-
puting both world-volume potentials and derivative correc-pution of the corresponding bosonic diagram. ThR€*
tions to the brane action. Th@(a') corrections to the ef- corrections are absent in this case.
fective action(22) have an overall trace in the non-Abelian
case. Otherwise, the analysis of Sec. Il holds in this case as V1. DISCUSSION
well since it involves terms quadratic i'. Let us study
another possible class of terms that could appear in the ef- In this paper we used a two-loop sigma model computa-
fective action: R®*. Consider two of them: tion to determine certain gravitational corrections to the
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D-brane action. In the bosonic case e corrections(22)  next order correction since the effective expansion parameter

were in agreement with those found [i6]. Corrections de- in the sigma model is«’/Rﬁ. However, in the present paper

pending on the dilation and ti&field will be the subject of we showed that those corrections are absent in the super-

future work. Interesting results in this direction using differ- string case.

ent techniques were obtained['rrts;. In the superstring case

we analyzed the possibility ofa(') corrections of the form

(35). Those terms could be of interest in AdS conformal field ACKNOWLEDGMENTS

theory(CFT) correspondence or dynamics of giant gravitons. | would like to thank Tomasz Taylor for bringing my at-
For example, in the case of spaces of constant curvaturention to this problem and for illuminating discussions. Also

with curvature independent of the transverse coordinates, Ed¢wish to thank Oleg Andreev and Ahmad Ghodsi for corre-
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